Roadmap on Digitalisation for Energy Efficiency in Buildings

Background

This roadmap was developed by the Digitalisation Working Group (DWG) of the Energy Efficiency Hub. The roadmap identifies near-term, medium-term, and long-term approaches to address key barriers associated with implementing digitalisation policies and programs to drive energy efficiency in buildings. The IEA estimates that digital technologies have the potential to save 10 percent of energy use in buildings,¹ and therefore can be an important part of an emissions reduction strategy.

The roadmap connects to a report prepared by the DWG entitled, "Digitalisation for the Energy Efficiency of Buildings Operations", released in September 2022.² The report describes key digital technologies and approaches relevant to improving building energy efficiency. Studies³ suggest that these technologies and approaches can be cost-effective and generally have a fast return on investment. However, barriers related to interoperability, data availability and analysis, privacy, and cybersecurity can reduce the energy savings potential of these solutions. The report examines case studies from several countries and identifies common challenges encountered during program implementation.

The roadmap lists key objectives for addressing each barrier related to interoperability, data availability and analysis, privacy, and cybersecurity and lays out a pathway to achieving these objectives through the use of appropriate practices during program design and implementation. The pathway is split into three phases or steps, where each phase roughly corresponds to:

- **Phase 1**: Development and design of practice(s)
- **Phase 2**: Pilot testing of practice(s)
- **Phase 3**: Large scale adoption of practice(s)

Based on case studies and experiences noted in the DWG report, challenges that may be encountered within each phase are listed, together with recommended practices that can potentially help mitigate them. References to specific examples and case studies in the report are made, wherever applicable. Public and private stakeholders⁴ responsible for implementing the practices are also indicated by the following icons:

¹ https://www.iea.org/reports/digitalisation-and-energy
⁴ Private stakeholders may include private industry, trade associations, standard-issuing organizations, and non-profits dedicated to buildings energy efficiency. The authors recognize that there is significant nuance in how stakeholders interact, with high variability from country to country. For example, there may be variations in regulatory oversight and license to operate.
The DWG hopes that the roadmap will be a useful resource to guide policymakers and other stakeholders in their efforts to design programs that promote the use of digital technologies to improve energy efficiency in buildings. The roadmap serves as an overview and quick guide for policymakers and other stakeholders on buildings digitalisation policy tools and levers practiced around the world, common pitfalls related to implementing those digitalisation programs and policies, and possible solutions based on international experience.

The roadmap and linked report can inform multiple stakeholders’ needs. For example, policymakers, program managers and utility companies can explore the various digitalisation policy and program examples referenced in the roadmap (for instance, examples of utility programs that require the use of certified smart thermostats in incentive programs) to help inform their own programs that can motivate businesses and individuals to adopt digital technologies with the potential to enhance energy efficiency in buildings. Practices related to data availability and analytics can equip policymakers and consumers with relevant information on cost-effective energy management in buildings. The technology examples embedded in the roadmap and summarized in Section 3.0 of the report can help utility companies and building energy managers to make data informed decisions about energy consumption reduction. Digital technology vendors and service providers can explore challenges experienced in case studies and use this information to inform the design of products and services.

The roadmap should be broadly applicable internationally as it is based on the insights and experience of several DWG member countries.5

5 United States (lead), Australia, Brazil, Canada, Denmark, European Union, France, Germany, and Japan
Interoperability

Barrier Description: Interoperability refers to the ability for software products and devices to communicate with each other within a building, among other buildings, and with the electric grid and its components.

Key Objectives
- Equip consumers with actionable energy use information.
- Ensure clear communications protocols between consumers and the external market.
- Develop policies compatible with interoperability standards.

Description of Phases

Phase 1: Develop technical standards and communication protocols
Achieving the interoperability of digital devices requires a convergence of policy, technology, and infrastructure. Energy efficiency practices such as demand response that are supported by improvements in digital technologies are more likely to succeed. Similarly, deployment of advanced technologies could be accelerated through government incentives or mandates. During the development of standards, we recommend creating task forces that bring together industry experts and policymakers to ensure there is robust technology and consumer support underpinning these policies.

Phase 2: Develop policies that facilitate market adoption
Currently, consumers must contend with the expense and complexity of connecting and managing disparate—and oftentimes incompatible—building systems. Interoperability ensures the market for energy services is both competitive and accessible to consumers. Industry and government must work in tandem to make it easy for consumers to compare energy efficiency incentive programs (e.g., rebates on the purchase and installation of smart thermostats) provided by different energy service providers.

Phase 3: Adapt to changes in technology, standards, or policy
Digital building systems must adapt to rapid changes in technologies, standards, and policies. Semantic models capable of interpreting a range of data in a standardized format are key to enabling the inclusion of new data in building energy systems. Another concern is that devices may perform conflicting actions in response to certain indicators. The rise of smart building devices necessitates easy-to-read dashboards that can curate data from multiple sources. Additionally, technologies that display energy use data in real time can further incentivize consumer adoption.

Phase 1: Develop technical standards and communication protocols
- Resources are lacking for monitoring effectiveness; Programs should ensure that customers are receiving competitive energy services.
- Establishing building connectivity can be expensive when done in isolation; efforts should take place to reduce these costs.
- Create multi-sectoral working groups to ensure that technical standards are being developed in parallel with existing cybersecurity and privacy protocols. For example, Australia’s Cyber Working Group works in parallel with interoperability policy development to ensure that interoperability is accompanied by robust cybersecurity and privacy measures.

Phase 2: Deploy policies/programs for technical standards and market facilitation
- Deploy automated communication modules that can minimize human interaction in communicating energy use data with external market participants and deliver competitive rates in an automated fashion.
- Establish building connectivity as part of normal equipment lifecycle investments to lower costs.
- Coordinate with industry.
- Create digital hubs for sharing data and monitoring energy use. This approach can improve consumer access to standards, empower users to understand their energy use across multiple services, and enhance competition between service providers. Several examples have accomplished this.

Phase 3: Adapt to changes in technology deployment, standards, or policy
- Devices and systems can become outdated and may lack necessary functionalities as technology develops; Devices and systems must adapt to changes in standards or the energy system.
- Stacking technologies can lead to conflicting actions taken by digital devices. For example, there may be a trade-off between temperature control and CO2 detection in the operation of a smart window.
- Improve data dashboards and visualization. This approach increases device interoperability by more effectively storing, processing, and filtering data. In combination with artificial intelligence technologies, these approaches can ensure that the proper action is taken by smart devices.

Examples cited in the report and other sources:
[6] Data availability, quality, and analysis barrier (Report section 4.4)
Data Availability and Analysis

Barrier Description:
Data availability refers to the need to have spatiotemporal data and/or device-specific data on building energy use available to end users, digital applications, and service providers. Some datasets are low quality due to a lack of robustness, missing entries, or poorly calibrated sensors (accuracy issues). Data are not intrinsically valuable without analysis that informs and enables program implementation, from automated load shifting to behavioral change.

<table>
<thead>
<tr>
<th>Phase 1: Data acquisition, infrastructure, and pilot project implementation</th>
<th>Phase 2: Adoption through policy and augmentation</th>
<th>Phase 3: Quality assessment and optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenges</td>
<td>Practices</td>
<td>Challenges</td>
</tr>
<tr>
<td>Data collection infrastructure is underdeveloped: Smart metering networks must have the capacity to collect large sums of data at high resolution across many devices in a secure and interoperable manner. In addition, behind-the-meter data is also challenging to collect.</td>
<td>Subsidize installation of smart metering networks to incentivize participation. For example, Brazil has implemented several subsidized pilot projects aimed at integrating smart metering systems in buildings [1].</td>
<td>Introduce data release mandates and data sharing incentives. Denmark has implemented data release mandates that have proven effective for extensive data collection across the building energy system [7]. Additional incentives for building renovation include tax deduction schemes for the inclusion of new energy-saving smart devices [8].</td>
</tr>
<tr>
<td>Data analysis methods are not standardized: Methods must be developed to analyze large quantities of data and to enact the appropriate analysis.</td>
<td>Support machine learning and advanced control algorithms & R&D to ensure data can be analyzed to accurately inform how consumers use energy [4].</td>
<td>Carry out information awareness campaigns to help improve the accessibility of energy consumption data and ensure consumers know how to adequately make dynamic decisions on energy use based on their consumption data [8].</td>
</tr>
<tr>
<td>Computational infrastructure is insufficient: Infrastructure to store and transmit large amounts of data in a way that is accessible to utilities, consumers, and policymakers must exist.</td>
<td>Develop energy certification schemes to ensure there are standardized methods for implementing policy based on energy consumption data [5].</td>
<td>Cooperate between public and private sector is lacking: These partnerships are required to ensure that policy is backed by technology.</td>
</tr>
</tbody>
</table>

Key Objectives
- Develop infrastructure capable of accommodating many devices across the energy system and delivering granular data in real time.
- Equip consumers with the data and resources to make decisions regarding their energy consumption.
- Incentivize government-industry partnerships to lead improvements in data availability, quality, and analysis.

Description of Phases

Phase 1: Data acquisition, infrastructure, and pilot project implementation

Government and industry must collaborate to develop infrastructure capable of collecting, analyzing, certifying, and distributing data from a wide range of devices across the energy system. Computing power is also needed to process large quantities of information and make it actionable to consumers and policymakers.

Phase 2: Adoption through policy and augmentation

Policy mandates must support meaningful data collection and analysis procedures. Data-release mandates are vital in ensuring that relevant data can be collected and distributed to all parties who need access to it.

Phase 3: Quality assessment and optimization

Greater deployment of energy use monitoring devices will improve the granularity and quality of data. Additionally, new energy use certification schemes can ensure data is being applied in a useful manner.

Examples cited in the report and other sources:

1. Brazil: Law 9991 of 2000 (Report sections 5.2, C.2)
2. Germany: Smart Meter Gateways (Report sections 5.7, C.4)
3. Australia: NATHERS (Report section: 5.0)
4. Australia: i-Hub (Report sections 5.1, C.1)
5. Germany: AI Strategy of the Federal Government (Report section 5.7)
7. Denmark: Releasing Electricity Distribution Data (Report sections 5.5, C.3)
10. New York State Energy Research and Development Authority (NYSERDA) Real Time Energy Management, https://www.nyserda.ny.gov/Ag-Programs/real-time-energy-management
11. United States: Green Button Initiative (Report sections 5.9, C.6)
Barrier Description: Privacy refers to consumer concerns about the mass collection of granular data on energy use and associated personal information. Consumers are worried about how data will be used, where the data are stored, and who can access the data.

Phase 1: Planning of infrastructure for data handling and transmission

Challenges: Data on energy consumption is very sensitive; however, state of the network, generation, and consumption data are necessary for system functions [1].

Practices:
- **Determine the data retention period, where data is stored, and how often data is transmitted** based on the time resolution of measurements and data type [2].
- **Each actor** (e.g., utility company, building manager, building owner, government official) should only receive the data needed to carry out its tasks [3].
- **Enact data handling regulations** that include data protection, data security, and data sovereignty [3].

Phase 2: Pilot-scale implementation of privacy protection procedures

Challenges: Smart meter data can lead to privacy and physical security concerns; sensitive consumption data must be adequately protected [4] [5].

Practices:
- **Collect smart meter data** via joint meter reading to connect equipment owned by externally connected businesses and smart meters [2].
- **Each actor** (building owner and utility company) should receive data directly from devices when relevant [1].
- **Anonymize and pseudonymize measurements** [1].
- **Aggregate measurements in the SMGW** [1].
- **Aggregate metering data on a building level** that is shared by utility companies with building owners or managers [5].
- **Allow entities** that are not energy service providers to access smart meter data only through an accreditation process [6].

Phase 3: Wide-scale deployment of privacy protocols and data handling procedures

Challenges: Consumers worry about misuse of their data; consumers should feel confident about data handling practices employed after the consumers agree to share their data [1].

Practices:
- **Create logbooks for data processing steps** that are accessible by consumers [1].
- **Ensure data owners** (e.g., utility companies) to gain consumer permissions prior to sharing data with third-party service providers [3].
- **Certifications** of some products and software require data from real-world tests: The certification process itself should adhere to appropriate privacy measures [3].
- **Only transfer aggregated data to a certification group** [3].

Description of Phases

Phase 1: Planning of infrastructure for data handling and transmission

Design of privacy protocols requires proper planning and coordination of data handling. Planning must be standardized and regulated to ensure that data is transmitted to the appropriate parties.

Phase 2: Pilot-scale implementation of privacy protection procedures

Pilot testing requires collection of individual energy consumption data, requiring concerted efforts to ensure that data is anonymized and transmitted in a secure manner.

Phase 3: Wide-scale deployment of privacy protocols and data handling procedures

At the large-scale level, consumers may be worried about the misuse of data. This phase often requires real-world data to appropriately certify products. At large scale, there must be particular attention to how energy certification schemes interact with individual privacy protection.

Key Objectives

- Address consumer protection. Consumers should feel that their data is safe from misuse and unauthorized access. To achieve greater market penetration consumers must be able to trust the companies that manage their data. Government entities can reduce this current lack of trust by enacting and enforcing clear regulations on data storage, handling, and transmission.
- Use smart meter data responsibly. Smart meter data often contains very granular energy consumption information which can convey socioeconomic and occupancy information of end consumers. Smart meter data should be used responsibly with strong privacy protections in place to protect end users from social engineering, blackmail, and physical security threats.
- Protect proprietary information. Companies that feel their proprietary information is protected may be more likely to cooperate in digitalization efforts and share data essential to energy.

Examples cited in the report and other sources:

[4] Privacy barrier (Report section 4.1)
[5] France overview (Report section 5.6)
Cybersecurity

Barrier Description: Cybersecurity refers to risks associated with digital technologies for building energy efficiency relying on Internet connections and computer networks. All digitally connected devices are at risk for attacks, from building management systems to smart appliances.

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>A single set of technical security standards may not be implementable by all digitally connected devices and tools; Security standards should be adequately flexible and allow for various technical implementations [1].</td>
<td>Create a rigorous federal certification process that includes annual surveillance audits and recertifications [1].</td>
</tr>
<tr>
<td>Connected devices and networks can serve as access points for attackers: Safeguards should be enacted to prevent connected devices and networks from being access points to other devices and systems in the building [3].</td>
<td>Practice secure design [1]. Separate internal and external connection networks [1] [2]. Monitor external communication logs [2]. For external connection providers, assign responsibility to report incidents and conduct risk assessments [2]. Use certified smart meter gateways (SMGWs) as the communication platform [1].</td>
</tr>
<tr>
<td>Consumers are concerned about third-party theft of their data: Consumers should be able to have confidence that their data is protected from unauthorized third parties [1].</td>
<td>Encrypt communication channels [1].</td>
</tr>
</tbody>
</table>

Phases

Phase 1: Planning and design of cybersecurity frameworks

- Security standards may be decentralized and vary between manufacturers: Security standards should instead be centralized and uniform [1].
- Create and use protection profiles [1].
- Set a minimum service level/set of functionalities that must be met by business operators and ensure their security framework allows this level to always be met [2].
- Security incidents, implementation problems, needs for updates, and/or data leaks may occur: Cybersecurity planning and implementation should be a continuous, iterative process [1].
- Implement continuous improvement for threat and leak monitoring [2]. Require secure software updates [1]. Certify software updates before implementing [1]. Certify hotfixes after implementing [1]. Encourage manufacturers to show ability to update software without replacing hardware [1].
- Use electronic identifiers and allow only known participants/devices to access data [1]. Use public key infrastructure for data sharing to enable mutual authentication [1]. Encrypt communication channels [1]. Secure communication paths cryptographically [1].

Key Objectives

- Secure operation and data transmission. Vulnerabilities, according to the United States Department of Homeland Security, are physical features or operational attributes that render an entity open to exploitation or susceptible to a given hazard. Connected devices and networks, which can be infiltration points, should be secured and data transmission should occur in a manner that mitigates risk of a cyberattack on a building or building system occurs.
- Incorporate security into all digitalization tool lifecycle phases. Technical and regulatory decisions can be impactful across sectors and shape market design. To reduce unintended consequences and unaddressed security concerns, cybersecurity awareness should begin with policy planning and the design of digitalization tools, consider future technology developments and needs, and continue through all remaining phases of the policy and tool life cycles.

Description of Phases

Phase 1: Planning and design of cybersecurity frameworks

Design of cybersecurity protocols are challenging due to the variable nature of devices and technologies which make it difficult to implement universal standards. Developing approaches to cybersecurity design, including protection profiles and a rigorous certification process are key to building effective cybersecurity frameworks.

Phase 2: Pilot-scale implementation of cybersecurity frameworks and “security by design”

Smart meters and connected devices can be points of vulnerability for cybersecurity attacks. Coupling policy with technological development (cybersecurity by design) can lower risk associated with these points of vulnerability.

Phase 3: Continued maintenance of cybersecurity frameworks for wide-scale deployment

At the large-scale level, there must be a variety of initiatives to monitor security breaches and appropriately respond to them. Cybersecurity frameworks must be dynamically updated to respond to threats in real time, requiring innovations in both technology and policy.

Examples cited in the report and other sources:

[3] Cybersecurity barrier (Report section 4.2)