

Riverside EfW plants, London UK (2,332t/d 65MW)

Hitachi Zosen Corporation

Waste to Energy

Heat recovery from waste

Hitachi Zosen

February 25, 2015

Hitachi Zosen Corporation Company Profile

A major global player in the business domains of Renewable Energy, Social Infrastructure and Disaster Prevention

We have developed a wide range of technologies

based on strong capabilities in the Waste to Energy

market worldwide.

Corporate Data and Business

	1001
Founded	1881
Incorporated	1934
Employees	9,171 (consolidated)*
Paid-in Capital	45 billion yen (483 million US\$) *
Net Sales	333 billion yen (2,822 million US\$) *
Headquarters	Osaka and Tokyo

Environmental Systems

- Waste to Energy plants
- Material recycle system
- Water & sludge treatment etc.

Industrial Plants

- Desalination Plants
- Power generation facilities
- Renewable energy etc.

Infrastructure

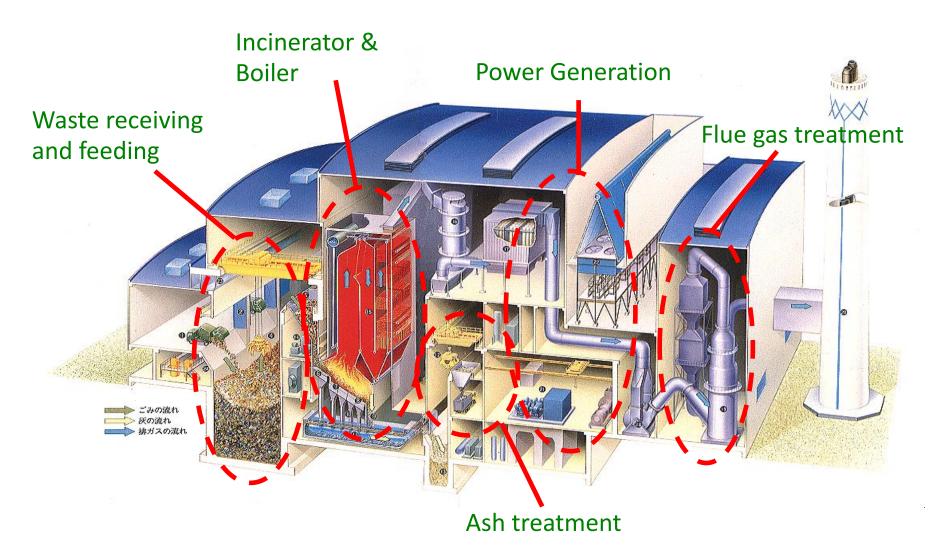
- Shield tunneling machines
- Bridges
- Disaster prevention systems etc.

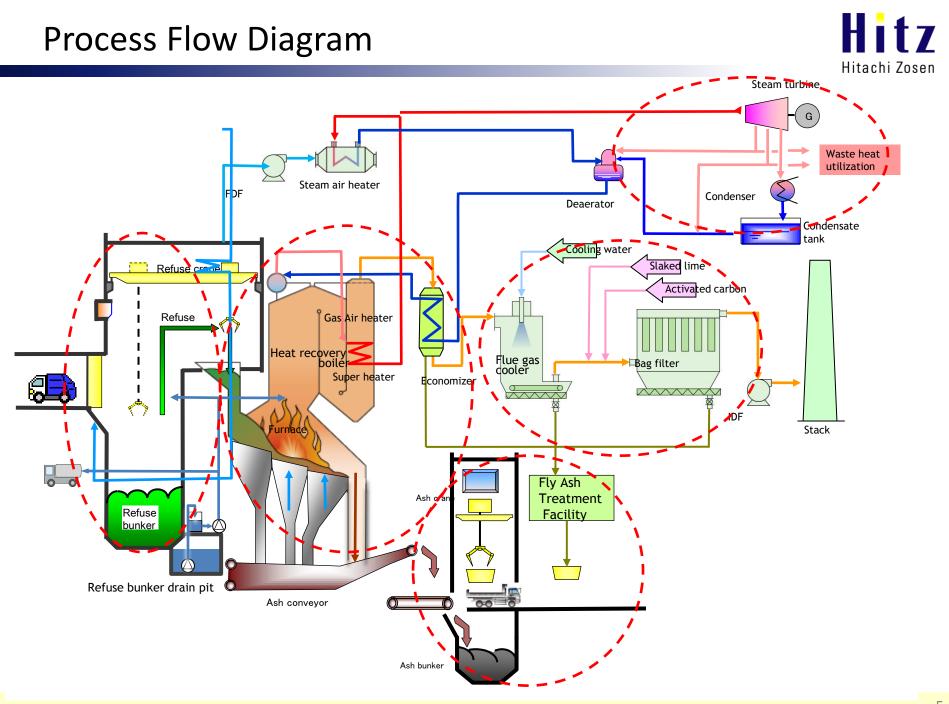
Process Equipment

- Pressure vessels
- Spent nuclear fuel storage cask & canister(container) etc.

Machinery

- Marine diesel engines
- Press machines
- Precision machinery etc.




*(As of March 31, 2014)

1. WASTE TO ENERGY

Why to combust Mixed Waste

Hitz Hitachi Zosen

- Less landfill space required
- Thermal Utilization of Energy Content
- No ground leakages
- No uncontrolled gas emissions
- Reduction of green house gas emissions
- Material Utilization
- Reduction of transportation distances

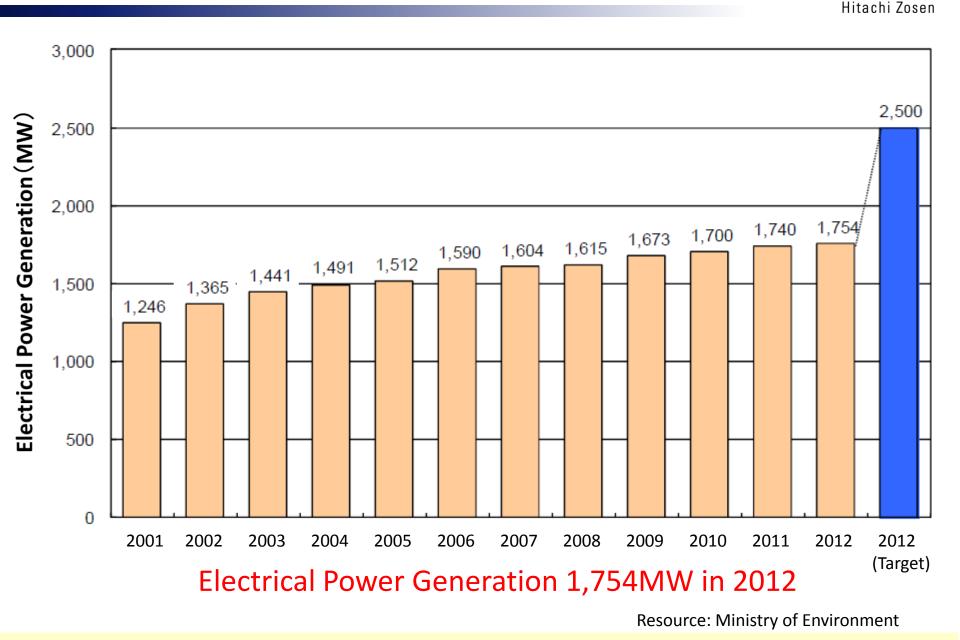
Many industralized countries have banned MSW landfills

Copyright Hitachi Zosen Corp.

Some Fact about WtE

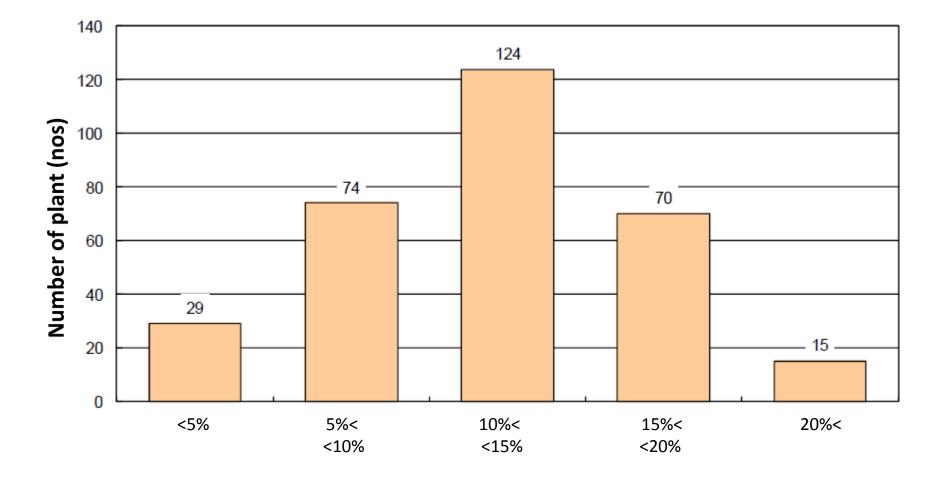
- Sanitary waste treatment

 Improvement residential environment and Health
- Mass treatment possibility
- Good adaptability for treatment of various wastes
- Volume reduction of Waste (over 90%)
 - → Landfill life-extension
- WtE is considered as Green Energy / Renewable Energy world wide.
- Waste heat utilization & Power Generation
- Stable clean energy
- Greenhouse Gas Reduction (Carbon emission credits)
- It meets all Environmental norms in Japan or in Europe


Improvement of living standard

> Effective utilization of unused energy

Reduce impact on environment

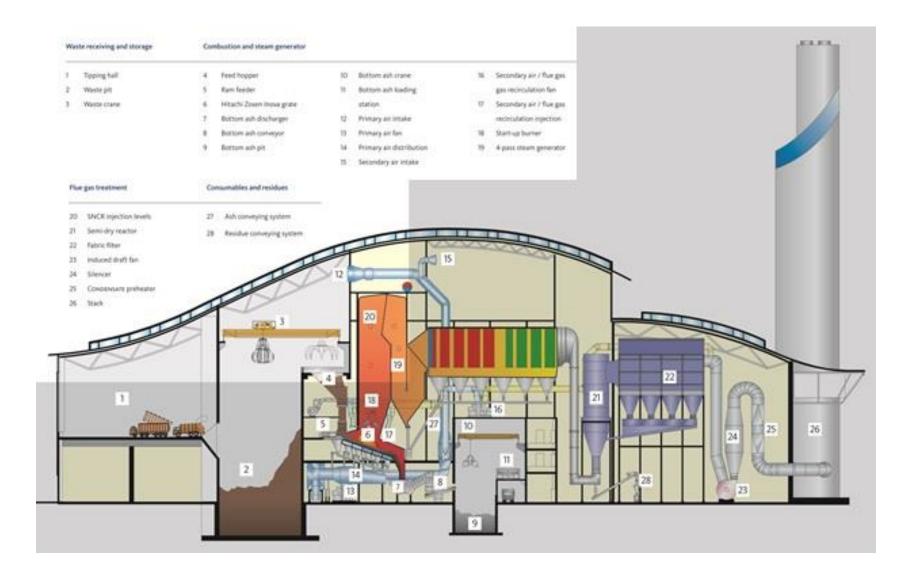

Power Generation by WtE installation in Japan

Hit7

Power Generation Efficiency by WtE in Japan

Resource: Ministry of Environment

Global reference of WtE

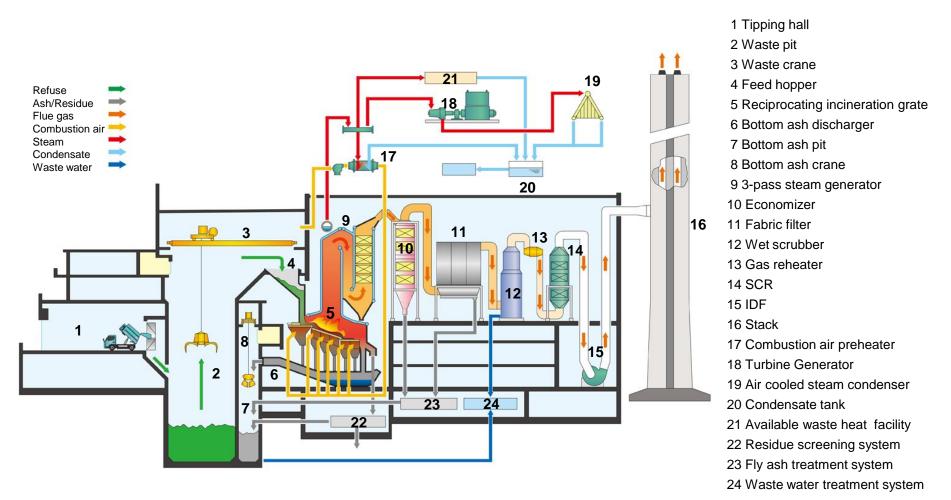

- Largest EfW facility in the UK
- Hitachi Zosen Inova was full turnkey contractor including jetty and road works
- 80% of waste delivery via barges from Thames River
- Highly efficient plant (27%) at higher steam conditions
- Steam goes to 72.4 MW_{el} turbine
- Plant operation during first 4 years carried out by Hitachi Zosen Inova

Riverside (London), United Kingdom

Key Data	
Client	Riverside Resource Recovery Ltd.
Start-up	2010
Technology Furnace Energy recovery Flue gas treatment	Grate furnace (air-cooled) 4-pass boiler, turbine SNCR, semi-dry process
Technical Data Fuel Waste capacity Net calorific value Thermal capacity Steam	Municipal waste 2,290t/d (763t, 3 lines) 9.0 MJ/kg 3 x 79.5 MW 3 x 54 t/h (72 bar, 427°C)

Flow sheet of London Riverside plant

Global reference of WtE


- Hitachi Zosen is EPC contractor for Turn-key basis excluding building works
- Highly efficient plant (20.4% @ DP) even though wet scrubber and SCR in flue gas treatment sysetem
- Hitachi Zosen providing Periodical Maintenance Services since start-up.

Osaka Hitashiyodo, Japan

Key Data	
Client	Osaka city
Start-up	2010
Technology Furnace Energy recovery Flue gas treatment	Grate furnace (air cooled) 4-pass-boiler dry + wet scrubber, SCR
Technical Data Fuel Waste capacity Thermal capacity Power out put Steam	Municipal waste 400 t/day (200t/d, 2 lines) 2 x 29 MW 10MW 2 x 74 t/h (40 bar, 400°C)

Flow sheet of Osaka Higashiyodo plant

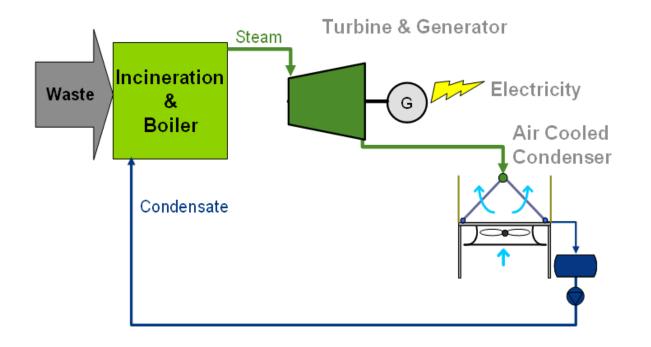
- Capacity: 200t/D x 2 units
- Steam Condition: 4MPa x 400°C
- Power Generation Capacity: 10,000kW
- Generating Efficiency: 20.4%

Hitachi Zosen India has developed standard WtE plant for Indian market: LoCal Plus

Design Point: Waste throughput 600t/d Net calorific value 1650 kcal/kg Power generation 11.5MW

Total waste quantity: W kg/h	= 25,000 kg/h = 600t/d
Net Calorific Value: NCV kcal/kg.	= 1,650 kcal/kg
Energy recovery potential (kWh)	= 1.16 x 10 ⁻³ x NCV x W
	= 1.16 x 10 ⁻³ x 1,650 x 25,000
	= 47,850 kW
Power generation (kW)	= 11,500 kW
Power generation efficiency (%)	= 11,500 / 47,850 x 100 = 24.0

Electric Power


Main Features

 Only electricity production without heat utilization

Efficiency

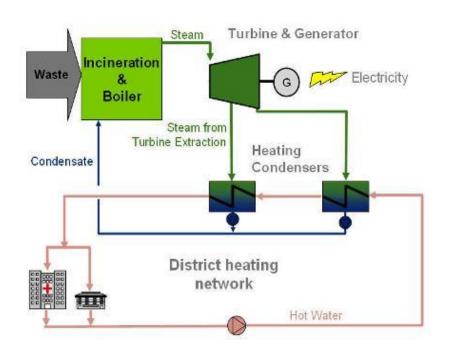
• Up to 27%

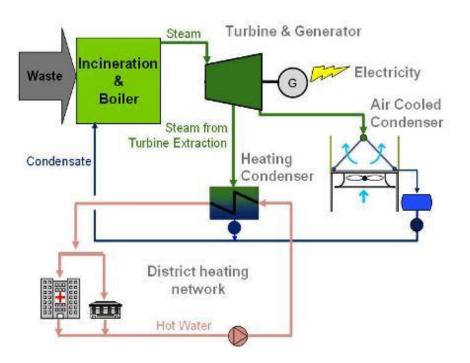
Combined Heat and Power

Main Process

 Combined heat and power with high heat demand and heat export throughout all or most of the year

Efficiency


• Up to 84%

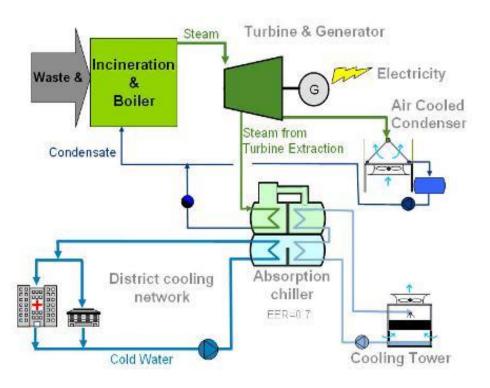

Main Process

 Combined heat and power with moderate heat demand part time or throughout the whole year

Efficiency

• Up to 62%

Combined Cold and Power

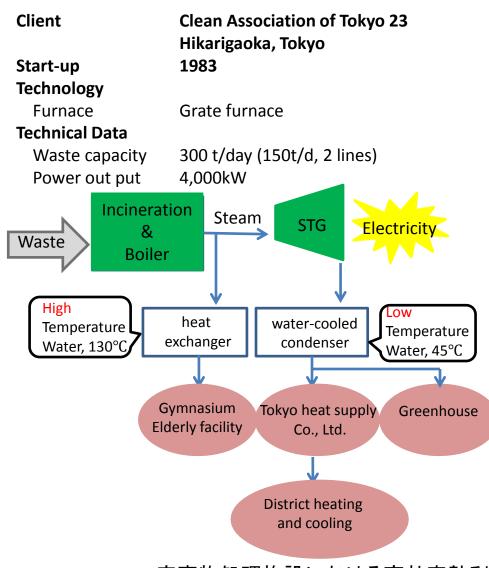


Main Process

• Combined cold and power with moderate heat demand part time or throughout the whole year

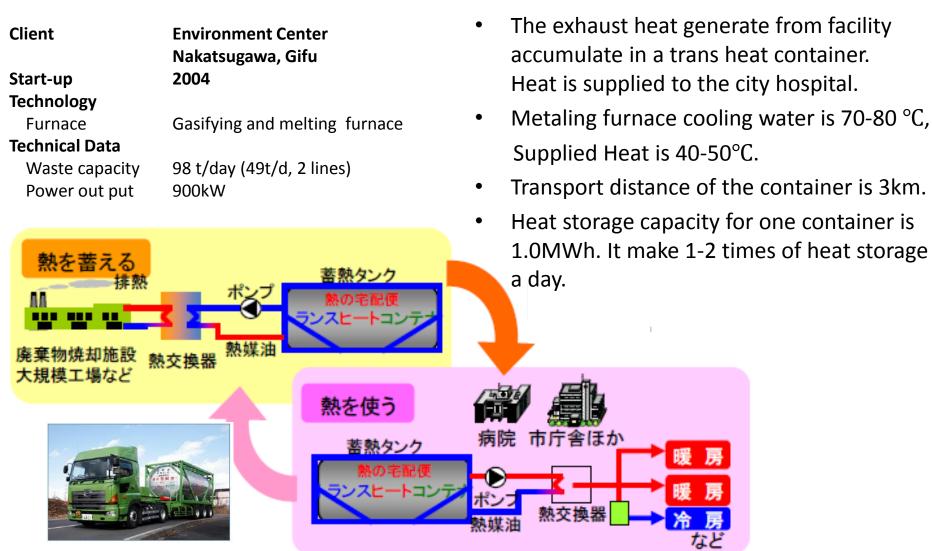
Efficiency

• Up to 50%

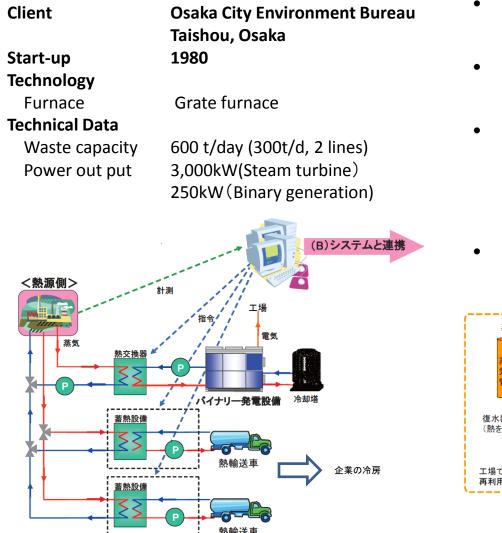

Reference of Heat Utilization

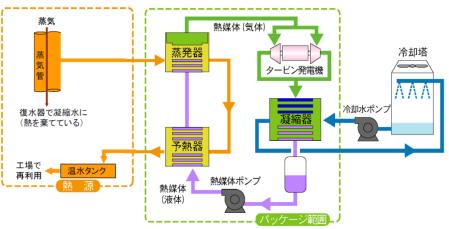
Name	Heat source	Method	Medium	Temp.	Heat recovery amount	Heat user
Hikarigaoka, Tokyo	Turbine exhaust	Water condenser	Hot water	45°C	36GJ/h	District heating and cooling, Greenhouse
Nakatsugawa	Melting furnace cooling water	Trans heat container	Heat medium	70°C	3.6GJ/container	Hot water supply and air conditioning at hospital
Taishou, Osaka	Boiler steam	Trans heat container	Heat medium	130°C	0.9GJ/container	Hot spring, Steelworks, District heating and cooling
	Turbine exhaust	Binary generation	Electricity	-	155kW (Net)	Power provider
Morinomiya, Osaka	Boiler steam	Boiler	Steam	220°C	150GJ/h	District heating and cooling
Ichihara	Turbine exhaust	Water condenser	Hot water	80°C	7.0GJ/h	Greenhouse for agricalcure
Higashi Saitama	Turbine exhaust	Heat pump	Hot water	90°C	20.9GJ/h	Swimming pool
Toubu, Kobe	Scrubber exhaust heat	Heat exchanger	Hot water	45-60°C	19.88GJ/h	Hot water provider in Rokkou island CITY

Case1: Hikarigaoka, Tokyo



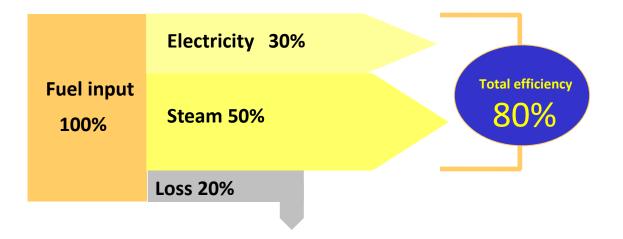
- Low-temperature water recover heat from turbine exhaust with a water-cool-condenser.
- Low-temperature water is supplied to Tokyo heat supply Co., Ltd. and greenhouse.
- Tokyo heat supply Co., Ltd. supply to district heating and cooling.
- High-temperature water recover heat from the steam with a heat exchanger.
- High-temperature water is supplied to gymnasium and elderly facility.


Case2: Nakatsugawa



Case3: Taishou, Osaka

- Binary generation is carried out by the turbine exhaust steam of facility.
- Heat storage transportation is carried out by boiler steam.
- The electricity which generated by binary generation is sold and the heat supplied to Hot spring, Steelworks, District heating and cooling by the heat storage transportation.
- Transport distance of the containers is 2-7km.


2. CO-GENERATION SYSTEM

(MW)	
Gas Turbine	0.5 1 2 3 4 5 6 7 8 9 10 20 30 40 Rolls-Royce VHP6 VHP6 VHP6 VHP6 VHP6 VHP6 VHP6 VHP6
Gas Engine	20V34SG
Diesel Engine	

- Power generation system with a total efficiency exceeding 80% achieved with heat recovery from exhaust gas.
- Environmental-friendly system by reducing GHG emissions.
- Self-standing power generating system even in the grid blackout situation.
- Peak-cut operation is possible

Gas Turbine	Number of Plants	Number of Engines	Total
GT-10 (4,000kW)	10	16	54,300kW
GT-13 (5,000kW)	3	3	14,500kW
GT-15 (6,000kW)	1	3	16,200kW
VHP6 (6,000kW)	27	34	208,280kW
LM-2500 (22,000kW)	3	4	106,100kW
Others	12	21	335,800kW
Total	56	81	735,180kW

Middle Class Gas Turbine – Line Up

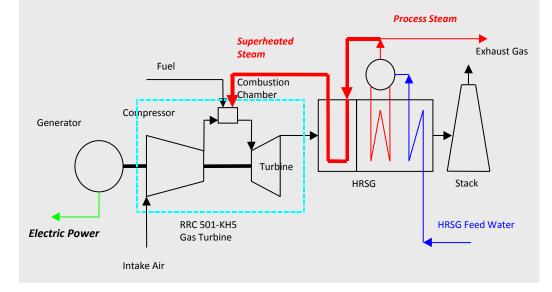
GT-10 RRC 501-KB5S	Power Output Steam Efficiency	4,100 kW (Simple Cycle) 11.0 t/h Electricity 27.0% Steam 50.8% Total 77.8%
GT-13 RRC 501-KB7S	Power Output Steam Efficiency	5,490 kW (Simple Cycle) 12.2 t/h Electricity 29.5% Steam 45.2% Total 75.4%
VHP-6 RRC 501-KH5	Power Output Steam Efficiency	6,100~4,200 kW (Variable) 0.4~8.7 t/h Electricity 39.0~29.9% Steam 1.9~46.6% Total 40.9~76.5%

Middle Class Gas Turbine – Features

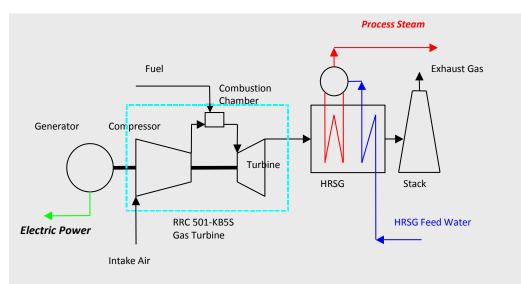
- Controlled by Hitachi Zosen's Original Governors 'Hicot'
- Powered by Rolls–Royce Aero Derivative Gas Turbine
 ✓ Light Weight & Compact but High Performance
- High Reliability
 - ✓ More than 13,000 units for Aero, 1,900 units for Power Generation
- Easy Maintenance
 - ✓ Sectioned in 6 modules

✓ Spare Engines available, anytime dispatchable for an emergency GT replacement work (only few hours)

- Durable for Daily Start & Stop operation
 - ✓ Designed for frequent Start & Stop operation inherited by Aero industry
 - ✓ Not affected in operational hours by the number of starts & stops



Difference between VHP6 and Simple Cycle


• VHP6

Variable Heat and Power Operation is Possible by Steam Injection

• SIMPLE CYCLE

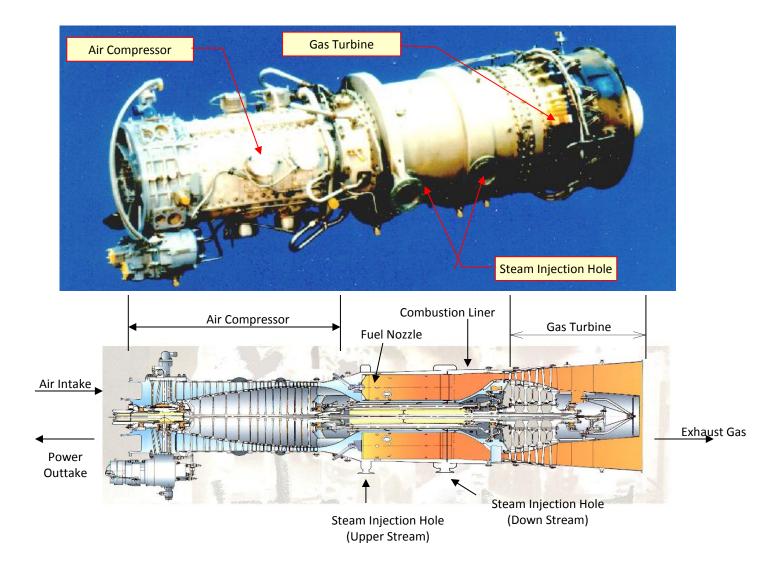
Constant ratio of Heat and Power Operation

• Variable heat and power operation is possible without shut down.

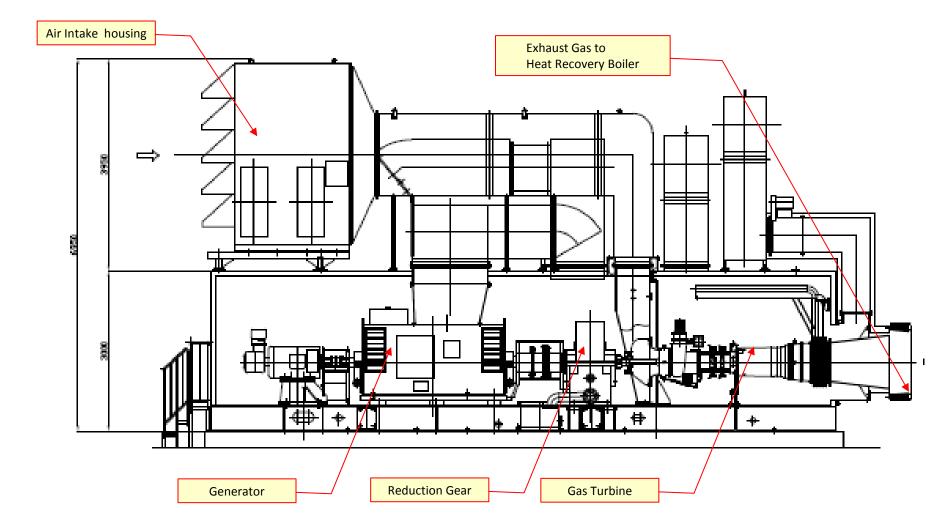
When you need more power and less steam (e.g. Summer season), you can generate 6MW power with 0.4t/h steam by injecting excess steam to gas turbine to increase power.

Variable

When you need more steam and less power (e.g. Winter season), you can generate 4MW power with 10t/h steam by no injection of steam to gas turbine.

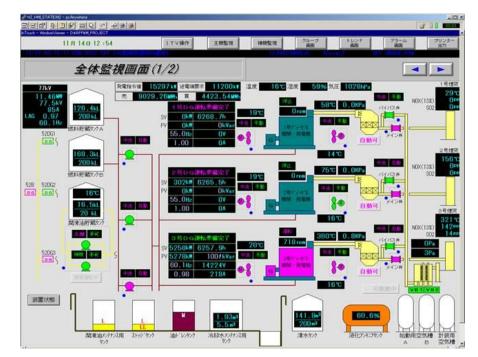

		Mark I	Mark II
Ambient Temp.	°C	15	15
Power Output	kW	6,100	6,120
Steamf for GT	kg/h	9,792	9,792
Steam for Factory	kg/h	400	3,500
Fuel Consumption	kcal/kW	2,207	2,370
Electrical Efficiency	%	39.0	36.3
Efficiency incl. Steam	%	40.9	51.9

		Mark I	Mark II
Ambient Temp.	°C	15	15
Power Output	kW	4,200	4,220
Steamf for GT	kg/h	2,052	2,054
Steam for Factory	kg/h	8,678	9,408
Fuel Consumption	kcal/kW	2,878	2,881
Electrical Efficiency	%	29.9	29.9
Efficiency incl. Steam	%	76.5	81.4


NO Energy is Wasted!!

501-KH5 Gas Turbine for VHP6

6MW-VHP6 Gas Turbine Power System (Himeji, Japan)



- 1. 24 hours On-Line monitoring system
- 2. Monitored by Hitachi Zosen technicians for 24hours
- 3. Advisory service for Preventive Maintenance is available
- Share the same information by both parties, Customer and Hitachi Zosen regardless the plants location for initial diagnosis

Thank You

Copyright Hitachi Zosen Corp.