IPEEC-Energy Management Action NetworK 6<sup>th</sup> Workshop (At New Delhi) Waste heat recovery policy and practices in Japan

February 25, 2015

### Niro Kitagawa The Energy Conservation Center, Japan (ECCJ)





## Today's topics

- 1. Waste heat recovery and utilization in EC Act in Japan
- 2. Technologies and examples for waste heat recovery





# Waste heat recovery and utilization in "EC Act" in Japan



## Points of EC Act in waste heat recovery

1) Standard of Judgment (standard values)

- --- exhaust gas temperature and recuperation ratio etc. are stipulated
- 2) Standard of Judgment (EC Guide line)
  - --- Enterprises are required to comply with the
  - EC Guide line
- 3) EM manual

--- According to the EC Guide line, enterprises are required to make EM manual

1) Standard of Judgment (standard values)

- a. Waste gas temperatures for boilers
- b. Rates of waste heat recovery for industrial furnaces
- c. Furnace wall outer surface

temperatures

There are two kinds of criteria: standard and target





## a. Waste gas temperatures for boilers

|                              | Exhaust Gas Temperature [ $^{\circ}$ C] |        |          |        |  |  |
|------------------------------|-----------------------------------------|--------|----------|--------|--|--|
|                              | Liquio                                  | d Fuel | Gas Fuel |        |  |  |
|                              | Standard                                | Target | Standard | Target |  |  |
| Type &<br>Size of the Boiler | Temp.                                   | Temp.  | Temp.    | Temp.  |  |  |
| For Electric Utility         | 145                                     | 135    | 110      | 110    |  |  |
| Evaporation over 30 t/h      | 200                                     | 160    | 170      | 140    |  |  |
| Evaporation 10–30 t/h        | 200                                     | 160    | 170      | 140    |  |  |
| Evaporation 5–10 t/h         | 220                                     | 180    | 200      | 160    |  |  |
| Evaporation under 5 t/h      | 250                                     | 200    | 220      | 180    |  |  |
| Small Once-Through Boiler    | 250                                     | 200    | 220      | 180    |  |  |





## Rates of waste heat recovery for industrial furnaces

| Exhaust gas | R  | ates of  | waste h | neat recovery (%) |        |    |  |
|-------------|----|----------|---------|-------------------|--------|----|--|
| temperature | S  | standard | k       |                   | target |    |  |
| (°C)        | А  | В        | С       | A                 | В      | C  |  |
| 600>        | 25 | 25       |         | 35                | 35     |    |  |
| 600-700     | 35 | 30       | 25      | 40                | 35     | 30 |  |
| 700-800     | 35 | 30       | 25      | 40                | 35     | 30 |  |
| 800-900     | 40 | 30       | 25      | 45                | 40     | 35 |  |
| 900-1000    | 45 | 35       | 30      | 55                | 45     | 40 |  |
| 1000≦       | 45 | 35       | 30      | 55                | 45     | 40 |  |

A : equal or more than 84,000MJ/h(Capacity of the furnace)

- B:21,000-84,000MJ/h
- C: 840-21,000MJ/h



### c. Furnace wall outer surface temperatures

| Inside           | Furnace wall outer surface temperatures (°C) |           |       |                 |     |       |  |  |
|------------------|----------------------------------------------|-----------|-------|-----------------|-----|-------|--|--|
| temperature of   |                                              | Standard  |       | Target          |     |       |  |  |
| the furnace (°C) | Ceiling                                      | Side wall | Base* | Ceiling Side wa |     | Base* |  |  |
| 1,300≦           | 140                                          | 120       | 180   | 120             | 110 | 160   |  |  |
| 1100-1,300       | 125                                          | 110       | 145   | 110             | 100 | 135   |  |  |
| 900-1,100        | 110                                          | 95        | 120   | 100             | 90  | 110   |  |  |
| 900>             | 90                                           | 80        | 100   | 80              | 70  | 90    |  |  |

\* In case bottom is in contact with open air

## 2) EC guide line and EM manual

- In the EC guide line, "Recovery and utilization of waste heat" is stipulated.
- That part is composed of
- a. Management
- b. Measurement/recording
- c. Maintenance/inspection
- d. Measures in installing new waste heat recovery facilities

### a. Management

- i) waste gas temperature or Rate of waste heat recovery
- ii) i) shall be managed referencing to standard value
- iii) Temperature, volume, and property of steam drain
- iv) Range of recovery of heated solid or liquid
- v) Waste heat shall be utilized in an appropriate manner

Regarding i), iii), iv), to make "EM manual" is required



### b. Measurement/recording

i) Temperature, heat quantity, components of heat media etc. shall be measured and recorded
ii) To make EM manual regarding "i)" is also required

### c. Maintenance/inspection

- Waste heat recovery facilities shall be inspected and maintained including cleaning of the heat transfer surface, etc. and prevention of heat media leakage
- ii) To make EM manual regarding "i)"is also required

# d. Measures in installing new waste heat recovery facilities

- When ducts for exhaust gas are newly installed, measures shall be taken which raise exhaust gas temperature (prevent leakage, insulation etc.)
- When recuperation equipment for waste heat is newly installed, measures shall be taken which raise heat recuperation ratio (improvement of properties and configurations for heat transfer surface, increase in heat transfer area etc.)



### Steam boiler management manual (Example)

|                      | Energy                                                                              | "Steam boiler"<br>(Example)                                                                                                                                                                                      |            | Refer               | ence No.: B-2                                                                                                                                                             |                         |       |                                |    |
|----------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|--------------------------------|----|
| n                    | nanagement<br>manual                                                                |                                                                                                                                                                                                                  |            |                     | Revised:                                                                                                                                                                  | Page                    | e: 1/ | 1                              |    |
| 1. P                 | urpose                                                                              |                                                                                                                                                                                                                  |            |                     |                                                                                                                                                                           |                         |       |                                |    |
| Α                    | 21                                                                                  | nagement manual is for rat<br>Energy Conservation Act an                                                                                                                                                         |            |                     |                                                                                                                                                                           | 00                      |       |                                |    |
| 2. S                 | cope of Applicati                                                                   | on                                                                                                                                                                                                               |            |                     |                                                                                                                                                                           |                         |       |                                |    |
| Т                    | o be applied to s                                                                   | team boilers (1.5 t/h x 3 units, A l                                                                                                                                                                             | neavy oil) |                     |                                                                                                                                                                           |                         |       |                                |    |
| Item                 |                                                                                     | Description                                                                                                                                                                                                      | Guio       | EC<br>deline<br>No. | Managemer<br>Manual                                                                                                                                                       | nt                      | Refer | ence<br>manu                   | al |
|                      | 1. Management                                                                       | t of fuel combustion Omit                                                                                                                                                                                        |            |                     |                                                                                                                                                                           |                         |       |                                |    |
| nent                 | 2. Heating equi                                                                     | ipment Omit                                                                                                                                                                                                      |            |                     |                                                                                                                                                                           |                         |       | nent                           |    |
| Operation management | ratio is set.<br>(2) Those which<br>the appendi<br>values listee<br>(3) The recover | ecovery<br>emperature or waste heat recover<br>a fall under the category of (A) (1)<br>x 2 shall comply with the standar<br>d in the appendix.<br>y scope of the temperature,<br>d nature of steam drain is set. | of II-3(1  | 1)B                 | <ul> <li>Waste gas<br/>temperature,<br/>180 °C or lowe</li> <li>Standard exha<br/>gas temperatu<br/>220 °C or lowe</li> <li>Water quality<br/>Within JIS's set</li> </ul> | aust<br>ire,<br>er<br>: |       | Uperation management<br>manual |    |
|                      | 4. Electric powe                                                                    | er application Omit                                                                                                                                                                                              |            |                     |                                                                                                                                                                           |                         |       |                                |    |





| lent<br>rd                |                                                                                                | gement of<br>ng equipm  | fuel comb<br>ent        | ustion   | Omit<br>Omit |                      |               | ok                                                  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------|-------------------------|-------------------------|----------|--------------|----------------------|---------------|-----------------------------------------------------|--|--|
| Measurement<br>and record | 3. Waste<br>(1) Matte                                                                          | heat reco<br>ers necess | very                    | -        | ste heat suo | ch II-3(2)           | - Once a day  | Record book                                         |  |  |
| N                         | 4. Electr                                                                                      | ic power a              | pplication              | L        | Omit         |                      |               | Н                                                   |  |  |
| q                         | 1. Mana                                                                                        | gement of               | fuel comb               | ustion   | Omit         |                      |               | d<br>al                                             |  |  |
| and                       | 2. Heatin                                                                                      | ng equipm               | ent                     |          | Omit         |                      |               | and<br>anual<br>ak                                  |  |  |
| Maintenance<br>inspection | 3. Waste heat recovery<br>(1) Inspection and cleaning of economizer's heat<br>transfer surface |                         |                         |          |              |                      | - Once a year | Maintenance and<br>inspection manual<br>Record book |  |  |
| ain<br>ir                 | <sup>.</sup> <sup>E</sup> 4. Thermal insulation, heat-retention Omit                           |                         |                         |          |              |                      |               | ain<br>spe<br>Re                                    |  |  |
| Ν                         | 5. Electric power application Omit                                                             |                         |                         |          |              |                      | M üi          |                                                     |  |  |
| alla<br>tion              |                                                                                                |                         | s judged<br>fect then p |          | technologi   | es                   |               |                                                     |  |  |
| Revision<br>history       | Revision date Revision contents                                                                |                         |                         |          | ts           | Creation             | Approv<br>al  |                                                     |  |  |
| evis<br>liste             |                                                                                                |                         |                         |          |              |                      |               |                                                     |  |  |
| R 7                       |                                                                                                |                         |                         |          |              |                      |               |                                                     |  |  |
| Approval                  |                                                                                                | Exami-<br>nation        |                         | Creation |              | Date of im mentation | -             |                                                     |  |  |
| IddA                      | D Crea                                                                                         |                         | Date of<br>establishm   | nent     |              |                      |               |                                                     |  |  |



# Summary of EC Act in waste heat recovery

- 1) Standard value (Standard of Judgment)
  - exhaust gas temperature, recuperation
  - ratio and furnace wall temperature
- 2) EC Guide line (Standard of Judgment)
  - Enterprises shall comply with EC Guide line
- 3) EM manual
  - According to EC Guide line, enterprises are required to make EM manual



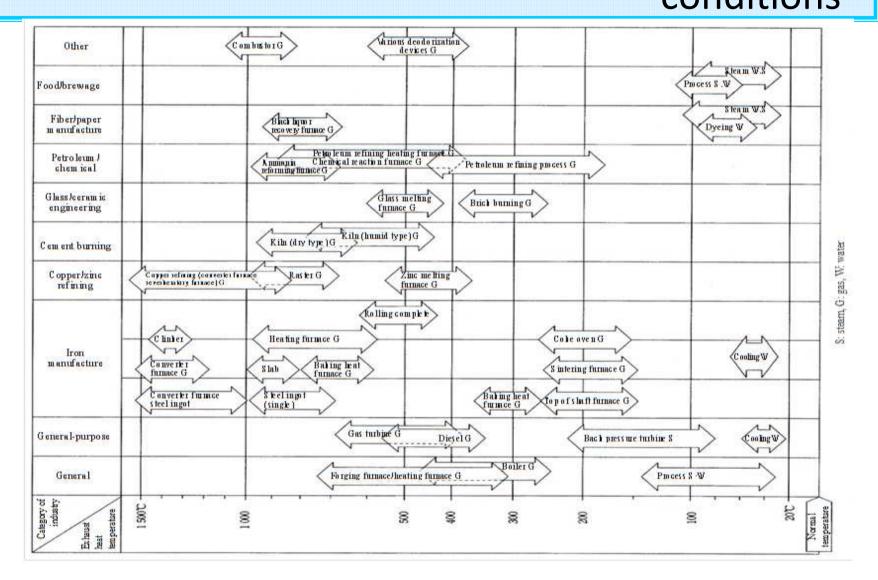


# Technologies and examples for waste heat recovery



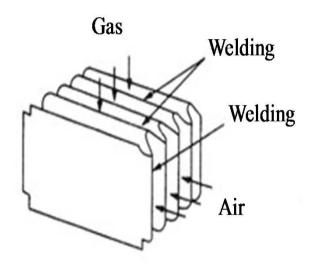


 (1) Overview of waste heat recovery
 (2) Types of heat exchangers and selections
 (3) Case studies




# (1) Overview of waste heat recovery1) Waste Heat Source and its Utilization

| Facility                                                 | Heat Source               | Utilization                                             |
|----------------------------------------------------------|---------------------------|---------------------------------------------------------|
| Furnace, boiler,<br>dryer                                | Exhaust gas               | Pre-heating of combustion<br>air or water               |
| Gas turbine                                              | Exhaust gas               | Generation of steam or hot water                        |
| High temperature<br>furnace                              | Furnace cooling<br>water  | Generation of hot water or steam                        |
| Frozen food thawing                                      | Cold heat of frozen stuff | Pre-cooling of water before<br>chiller facility         |
| Washer, sterilizer,<br>cooker (textile, food<br>factory) | Hot waste water           | Pre-heating of process<br>water                         |
| Burning process<br>(ceramic, cement,<br>paint baking)    | Burning gas               | Pre-heating of raw material,<br>or heat source of dryer |



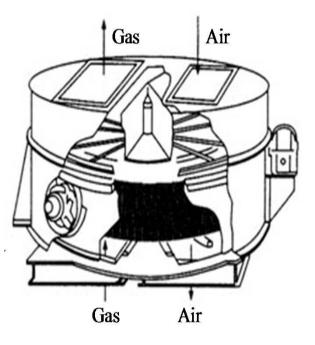

# 2) Exhaust heat sources and temperature conditions

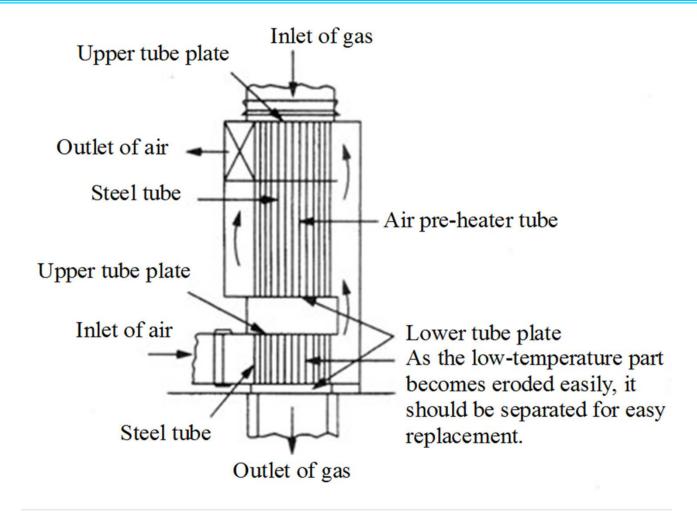


8

# (2) Types of heat exchangers and selections1) heat exchangers(1/4)





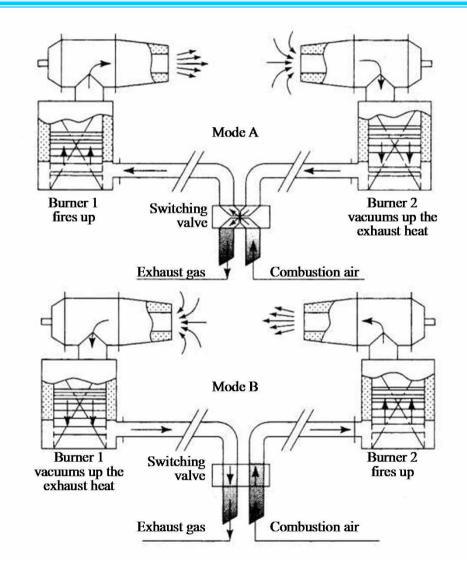


Plate-type air pre-heater

Rotating regenerative air pre-heater



The Energy Conservation Center Japan

### heat exchangers(2/4)

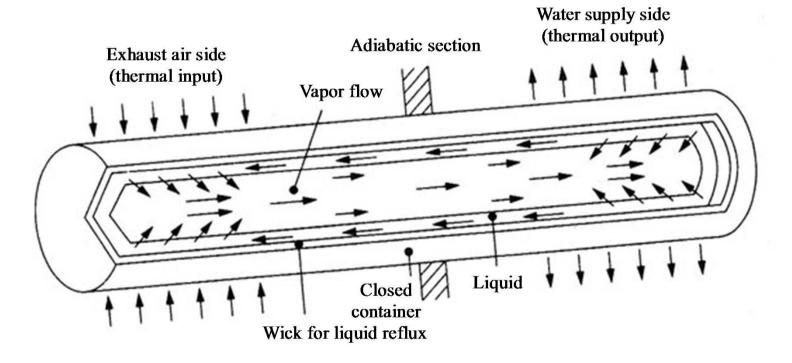



Multi-tubular air pre-heater

×

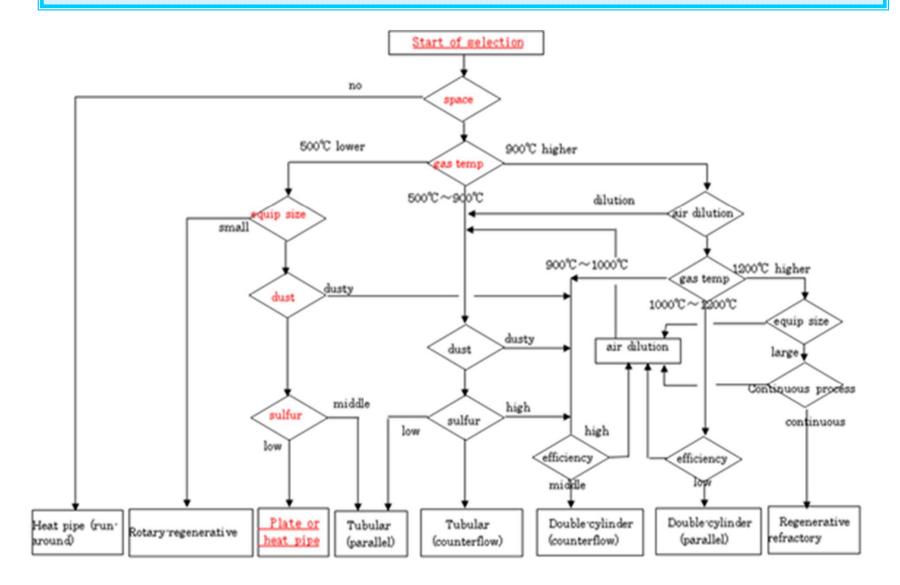


### heat exchangers(3/4) Operating principle of a regenerative burner




ceramic heat storage bodies are equipped

switching valve operates for 30–90sec

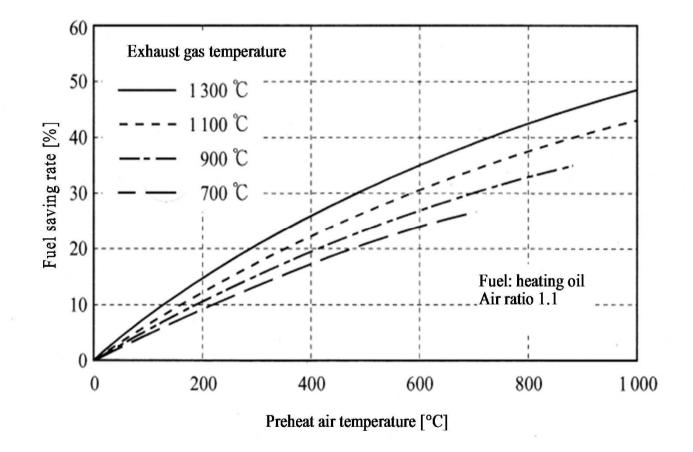

the exhaust gas temperature is lowered to 300° C or less regardless of the temperature conditions in the furnace

### heat exchangers(4/4) Working principle of heat pipe





### 2) Selection tree for heat Exchangers




### (3) Case studies

- 1) Preheating of the combustion air
- 2) Renewal to regenerative burners
- 3) Steam drain-off recovery
- 4) Heat retention of steam valves
- 5) Air and gas preheating systems for a boiler plant
- 6) Process flow involving the use of a heat-pipetype air pre-heater
- 7) Heat recovery of tunnel dryer exhaust gas
- 8) Waste heat recovery in tunnel kiln



### 1) Preheating of the combustion air



Preheating of the combustion air by a pre-heater (recuperator, heat exchanger) is most widely used



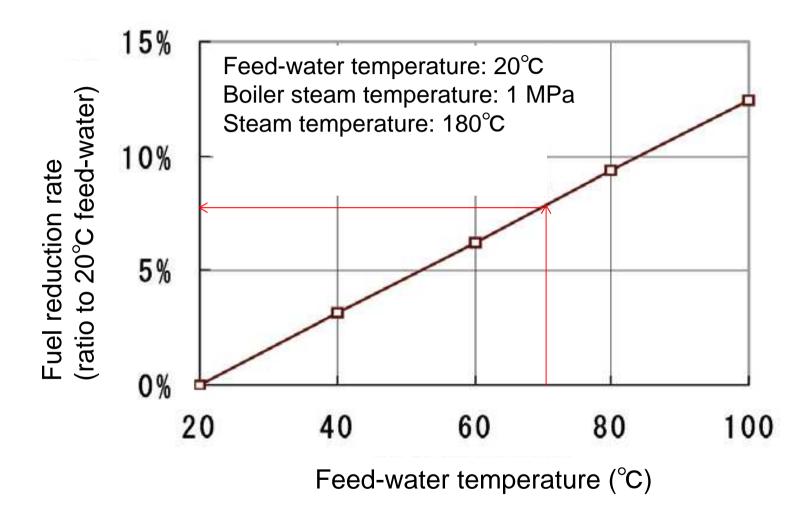
## 2) Renewal to regenerative burners

| Preconditions of estimation     |                                |
|---------------------------------|--------------------------------|
| Fuel                            | 13A gas (natural gas)          |
| Gas consumption                 | 250,000m3/y                    |
| Present air preheating temper   | ature 200°C                    |
| Present exhaust gas temperat    | ture 850°C                     |
| Efficiency of regenerative burr | ner 80%                        |
| Air preheating temperature aft  | ter renewal <mark>684°C</mark> |
| Air ratio                       | 1.2                            |
| Fuel price                      | ¥102/m3                        |
| Effect estimation               |                                |
| Gas reduction                   | 62,500m3/y (25%)               |
| (Oil equivalent                 | 73kL/y)                        |
| Sum of saving                   | ¥6,370,000/y                   |
|                                 |                                |





## 3) Steam drain-off recovery


### Problems with the current situation

Drain-off discharged from mold steam heaters is supposed to be recovered by a tank through pipes, but actually, drain-off is not recovered because impurities flowing out from heaters cause iron rust inside the tank.

### Improvement measures

For prevention of iron rust, the inside of the drainoff tank and the mold will be cleaned up, and antirust paint applied to the inside of the tank. After that, drain-off will be recovered in boilers.





Feed-water temperature and fuel reduction rate



### Effect estimation

### Calculation formula

Feed-water temperature after drain-off recovery (°C) = former feed-water temperature (°C) +  $\eta$ d × (drain-off temperature - former feed-water temperature) °C Ratio of drain-off recovery against feed-water volume  $\eta$ d = drain-off recovery amount (t) ÷ boiler feed-water volume (t)

Fuel reduction rate after drain-off recovery: obtained from the above chart

Fuel reduction = fuel consumption in the current situation (kL/year) × fuel reduction rate after drain-off recovery



### Preconditions of estimation

Boiler fuel consumption: Type-A heavy oil 340 kL/year; Boiler efficiency: 80%; Evaporation factor: 10.9 kg/L; Blow rate: 8% Amount of evaporation: 340 kL/year  $\times$  10.9 kL/L = 3,706 t/year Amount of feed-water: 3,706 t/year  $\times$  1.08 = 4,002 t/year Drain-off recovery rate: 80%; Drain-off recovery temperature: 90°C; Former feed-water temperature: 20°C Recovered amount: 3,706 t/year  $\times$  0.8 = 2,965 t/year Drain-off recovery rate against feed-water volume  $\eta d = 2,965$  t/year  $\div$  4,002 t/year = 0.741 Type-A heavy oil unit price: 60 yen/L Waterworks unit price (including sewerage charge): 780 yen/t = 0.78 yen/kg

### Effect estimation

Feed-water temperature after drain-off recovery =  $20^{\circ}C + 0.741 \times (90^{\circ}C - 20^{\circ}C) = 72^{\circ}C$ 

Fuel reduction rate: 7.5% based on the above chart

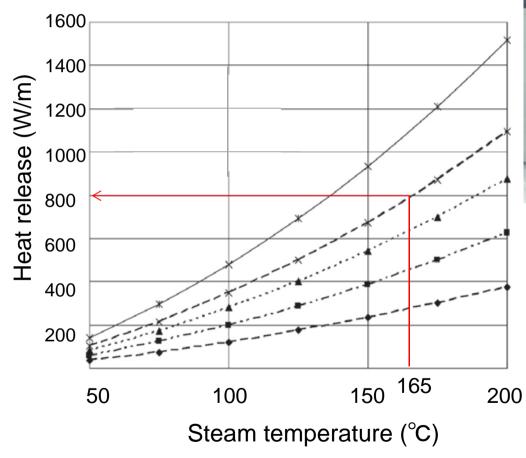
Fuel consumption reduction: 340 kL/year × 0.075 = 25.5 kL/year





## 4) Heat retention of steam valves

### Problems with the current situation


In a large hospital (total floor area: 60,000 m2), steam piping valves, which do not have heat retention covers, release heat from the surface.

### Improvement measures

Heat loss is prevented by putting heat retention covers with a hook and loop fastener on steam valves. They can be quickly attached to and removed from intricately-shaped valves.



### Heat release from bare steam pipes





Heat retention of valves at the steam header

[Calculation conditions] Horizontal pipes, natural convection Ambient air temperature = 20°C

Emissivity  $\varepsilon = 0.7$ 

### Effect estimation



### Preconditions of estimation

Steam pressure/temperature (saturated): 0.7 MPa · 165°C

Specifications and number of steam valves: 100A flanged type spherical valve, 100 units

Straight pipe length equivalent of 100A flanged type spherical valve: 1.27 m/unit

Bare valve heat loss: 100A bare steam pipe heat loss (see the Chart 2) x straight pipe length equivalent to the

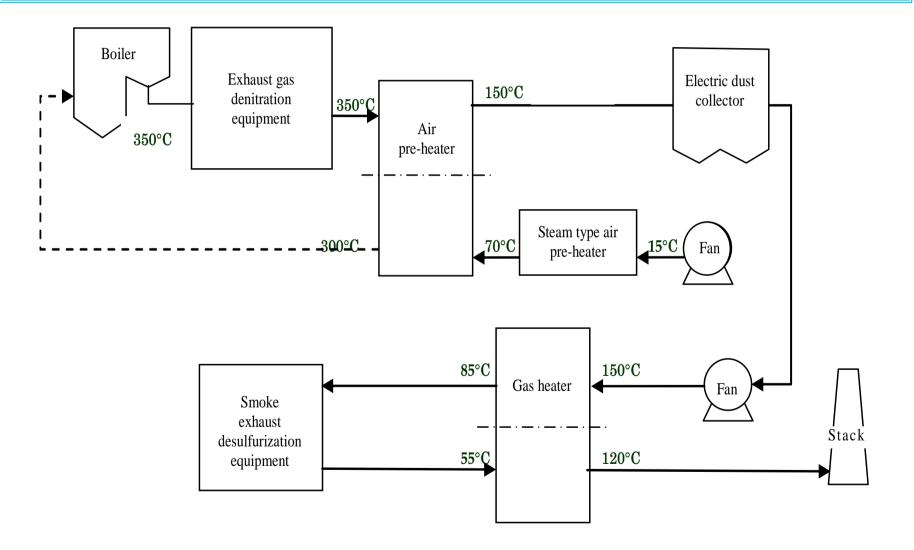
valve surface area = 800 W/m x 1.27 m/unit = 1.0 kW/unit

Heat retention efficiency (= heat loss reduction after heat retention  $\div$  bare pipe heat loss): 85%

Boiler efficiency: 70% (including operation efficiency)

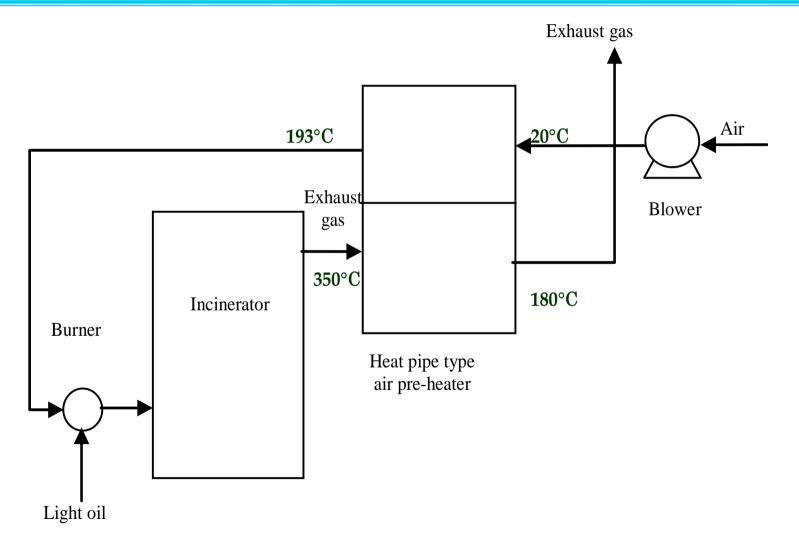
Operating hours: 12 h/day x 365 day/year = 4,380 h/year

Calorific value (low calorific value) (13A): 40.7MJ/m3


Average gas unit price: 70 yen/m3

Effect estimation

```
Heat loss reduction = 1.0 kW/unit x 100 units x 0.85 x 4,380 h/year x 3.6 MJ/kWh = 1,340,280 MJ/year Gas reduction = 1,340,280 MJ/year \div (40.7 MJ/m3 x 0.7) = 47,044 m3/year
```




### 5) Air and gas preheating systems for a boiler plant



**ECCJ** The Energy Conservation Center Japan

### 6) Process flow involving the use of a heat-pipe-type air pre-heater



Air

3780

2

58

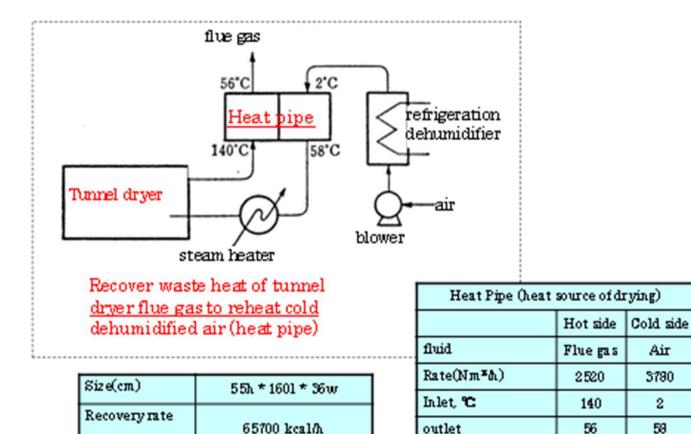
41

9

140

56

61


14

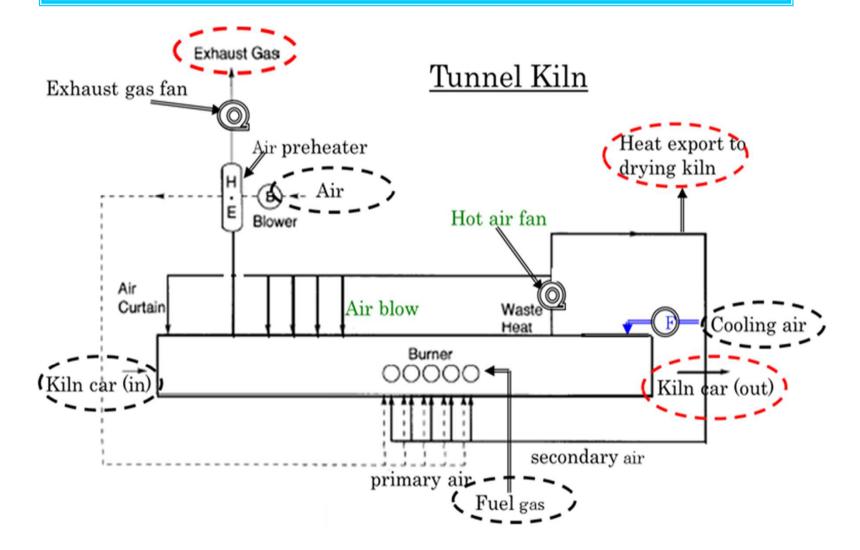
Temp efficiency, %

⊿P, mm Aq



### 7) Heat recovery of tunnel dryer exhaust gas




3.5 \* 10<sup>€</sup>¥≬r

Saving





### 8) Waste heat recovery in tunnel kiln (Ceramic factory)



### Thank You



For More Information The Energy Conservation Center, Japan http://www.eccj.or.jp



The Energy Conservation Center, Japan